INDICATIONS AND USAGE

Cycloset® (bromocriptine mesylate) is a dopamine receptor agonist indicated as an adjunct to diet and exercise to improve glycemic control in adults with type 2 diabetes mellitus.

WARNINGS AND PRECAUTIONS

Hypotension: Can cause orthostatic hypotension and syncope, particularly upon initiation or dose escalation. Use with caution in patients with a history of hypotension or syncope, particularly when transitioning to a dose higher than 1.25 mg/day.

Dopamine receptor antagonists, including neuroleptic agents that have dopamine D2 receptor antagonistic activity, can cause unmasking of Parkinson's disease in patients with idiopathic Parkinson's disease or Parkinson's disease caused by prior exposure to levodopa. If unmasking occurs, discontinue Cycloset® until this condition is controlled.

Other dopamine receptor agonists are indicated for the treatment of Parkinson's disease, restless legs syndrome, and certain forms of secondary hypogonadism. Use of Cycloset® should be carefully considered in patients with pre-existing dopaminergic dysfunction.

OVERDOSAGE

Acute Overdose: If signs of overdose are noted, discontinue Cycloset® and symptomatic and supportive measures should be instituted if the patient is not hypotensive. There are no specific antidotes.

Efficacy has not been confirmed in combination with insulin.

Limited efficacy data in combination with thiazolidinediones.

USE IN SPECIFIC POPULATIONS

Pediatric Use: Safety and efficacy of Cycloset® have not been established in pediatric patients.

Geriatric Use: Greater sensitivity of some older individuals to the effects of Cycloset® may require lower initial dosages and slower dose escalation than those used in younger populations.

Pregnancy: The drug has not been studied specifically in pregnant women. The potential benefits of therapy with Cycloset® in pregnant women may outweigh the potential risk to the fetus, particularly if the benefits of therapy are anticipated to outweigh the potential risk in women with uncontrolled diabetes.

Labor and Delivery: There are no adequate and well-controlled studies in pregnant women. It is not known whether Cycloset® can cause fetal harm when administered to a pregnant woman. Use Cycloset® during pregnancy only if the potential benefit justifies the potential risk to the fetus.

Lactation: It is not known if Cycloset® is excreted in human milk. Because many drugs are excreted in human milk, caution should be exercised when Cycloset® is administered to a nursing woman.

CONTRAINDICATIONS

Hypersensitivity to bromocriptine or to any of the ingredients of Cycloset®

CONTRAINDICATIONS: Use with caution in patients with a history of hypotension or syncope, particularly when transitioning to a dose higher than 1.25 mg/day.

WARNINGS AND PRECAUTIONS

Other dopamine receptor agonists are indicated for the treatment of Parkinson's disease, restless legs syndrome, and certain forms of secondary hypogonadism. Use of Cycloset® should be carefully considered in patients with pre-existing dopaminergic dysfunction.

INFORMATION FOR PATIENTS

Tell your healthcare provider about all the medicines you take, including prescription and non-prescription drugs, vitamins, and herbal or other dietary products. Ask your healthcare provider if you are not sure.

Tell your healthcare provider if you have ever had any of the following conditions:

- Fainting (syncopal) migraine headaches
- Have ever passed out or fainted
- Have passed out or fainted after eating or drinking alcohol
- Have had a low blood pressure reaction while receiving dopamine receptor agonist therapy
- Are taking medicines that may affect blood pressure (e.g., erythromycin, clonidine)

Do not take Cycloset® with ergot medicines. Ask your healthcare provider if you are not sure.

If you take medicines for:

- Migraine headaches
- High blood pressure
- Heart condition
- Mental health conditions
- Parkinson's disease

Cycloset® may increase the unbound fraction of other concomitantly used highly protein-bound medicines. Therefore, Cycloset® may increase the unbound fraction of other concomitantly used highly protein-bound medicines.

The concurrent use of Cycloset® with these agents has not been studied.

INTERACTIONS

Other dopamine receptor agonists are indicated for the treatment of Parkinson's disease, restless legs syndrome, and certain forms of secondary hypogonadism. Use of Cycloset® should be carefully considered in patients with pre-existing dopaminergic dysfunction.

It is unknown if Cycloset® is capable of stimulating prolactin release.

The indication for use of bromocriptine for inhibition of postpartum lactation was withdrawn based on reports of 2 deaths and 1 case of severe thrombosis in hospitalized patients treated for lactation suppression. Additional studies have suggested that bromocriptine's risk of thrombosis may be much greater than previously believed.

Additional studies have suggested that bromocriptine's risk of thrombosis may be much greater than previously believed.
The most common side effects of CYCLOSET include:

- nausea
- headache
- fatigue or dizziness. If you have any side effect from CYCLOSET, you should not drive or use other heavy machines until the side effect is better.
- dizziness
- cramping
- increased blood sugar (hyperglycemia), especially when used with another type of diabetes medicine known as a sulfonylurea.

Tell your healthcare provider if you have any side effect that bothers you or that does not go away.

These are not all the possible side effects of CYCLOSET. For more information, ask your healthcare provider or pharmacist.

Call your doctor for medical advice about side effects.

You may report side effects to FDA at 1-800-FDA-1088.

CLINICAL PHARMACOLOGY

The most commonly reported signs and symptoms that are associated with hyperprolactinemia are primarily those related to the mammary gland, with a focus on galactorrhea and amenorrhea. In clinically relevant models, bromocriptine mesylate is a dopamine-D2 receptor agonist that is able to decrease the elevated pituitary prolactin levels. In humans, bromocriptine mesylate is rapidly absorbed after oral administration. After oral administration, bromocriptine mesylate is extensively metabolized by the liver, and the primary metabolites are firmly bound to plasma proteins. These metabolites are excreted in the bile and are recirculated through the biliary flora. The biliary drugs are then excreted into the feces. Bromocriptine mesylate is not removed by hemodialysis or peritoneal dialysis, and hemodialysis is not effective in reversing the effects of bromocriptine mesylate.

The most commonly reported signs and symptoms from other clinical studies that are associated with bromocriptine mesylate use are primarily those related to the mammary gland, with a focus on galactorrhea and amenorrhea. In humans, bromocriptine mesylate is rapidly absorbed after oral administration. After oral administration, bromocriptine mesylate is extensively metabolized by the liver, and the primary metabolites are firmly bound to plasma proteins. These metabolites are excreted in the bile and are recirculated through the biliary flora. The biliary drugs are then excreted into the feces. Bromocriptine mesylate is not removed by hemodialysis or peritoneal dialysis, and hemodialysis is not effective in reversing the effects of bromocriptine mesylate.

The most commonly reported side effects from other clinical studies that are associated with bromocriptine mesylate use are primarily those related to the mammary gland, with a focus on galactorrhea and amenorrhea. In humans, bromocriptine mesylate is rapidly absorbed after oral administration. After oral administration, bromocriptine mesylate is extensively metabolized by the liver, and the primary metabolites are firmly bound to plasma proteins. These metabolites are excreted in the bile and are recirculated through the biliary flora. The biliary drugs are then excreted into the feces. Bromocriptine mesylate is not removed by hemodialysis or peritoneal dialysis, and hemodialysis is not effective in reversing the effects of bromocriptine mesylate.

The most commonly reported side effects from other clinical studies that are associated with bromocriptine mesylate use are primarily those related to the mammary gland, with a focus on galactorrhea and amenorrhea. In humans, bromocriptine mesylate is rapidly absorbed after oral administration. After oral administration, bromocriptine mesylate is extensively metabolized by the liver, and the primary metabolites are firmly bound to plasma proteins. These metabolites are excreted in the bile and are recirculated through the biliary flora. The biliary drugs are then excreted into the feces. Bromocriptine mesylate is not removed by hemodialysis or peritoneal dialysis, and hemodialysis is not effective in reversing the effects of bromocriptine mesylate.

In female rats treated with oral doses of 1 and 3 mg/kg (2 to 7 times the human 4.8 mg daily dose, based on mg/m²) for 12 weeks, there was a slight increase in milk production due to the dependence of implantation and the maintenance of gestation on prolactin in the rat and are not relevant to women. However, the finding is unlikely to be clinically relevant. In male rats given oral doses of 2, 10, or 50 mg/kg/day (up to 120 times the human 4.8 mg daily dose, based on mg/m²) up to 16 weeks, there was a slight increase in milk production due to the dependence of implantation and the maintenance of gestation on prolactin in the rat and are not relevant to women. However, the finding is unlikely to be clinically relevant. In both studies, there was a slight increase in milk production due to the dependence of implantation and the maintenance of gestation on prolactin in the rat and are not relevant to women. However, the finding is unlikely to be clinically relevant.

When male rats given oral doses of 2, 10, or 50 mg/kg/day (up to 120 times the human 4.8 mg daily dose, based on mg/m²) for 2 weeks, there was a slight increase in milk production due to the dependence of implantation and the maintenance of gestation on prolactin in the rat and are not relevant to women. However, the finding is unlikely to be clinically relevant. In both studies, there was a slight increase in milk production due to the dependence of implantation and the maintenance of gestation on prolactin in the rat and are not relevant to women. However, the finding is unlikely to be clinically relevant.

When male rats given oral doses of 2, 10, or 50 mg/kg/day (up to 120 times the human 4.8 mg daily dose, based on mg/m²) for 12 weeks, there was a slight increase in milk production due to the dependence of implantation and the maintenance of gestation on prolactin in the rat and are not relevant to women. However, the finding is unlikely to be clinically relevant. In both studies, there was a slight increase in milk production due to the dependence of implantation and the maintenance of gestation on prolactin in the rat and are not relevant to women. However, the finding is unlikely to be clinically relevant.

When male rats given oral doses of 2, 10, or 50 mg/kg/day (up to 120 times the human 4.8 mg daily dose, based on mg/m²) for 12 weeks, there was a slight increase in milk production due to the dependence of implantation and the maintenance of gestation on prolactin in the rat and are not relevant to women. However, the finding is unlikely to be clinically relevant. In both studies, there was a slight increase in milk production due to the dependence of implantation and the maintenance of gestation on prolactin in the rat and are not relevant to women. However, the finding is unlikely to be clinically relevant.

When male rats given oral doses of 2, 10, or 50 mg/kg/day (up to 120 times the human 4.8 mg daily dose, based on mg/m²) for 12 weeks, there was a slight increase in milk production due to the dependence of implantation and the maintenance of gestation on prolactin in the rat and are not relevant to women. However, the finding is unlikely to be clinically relevant. In both studies, there was a slight increase in milk production due to the dependence of implantation and the maintenance of gestation on prolactin in the rat and are not relevant to women. However, the finding is unlikely to be clinically relevant.

When male rats given oral doses of 2, 10, or 50 mg/kg/day (up to 120 times the human 4.8 mg daily dose, based on mg/m²) for 12 weeks, there was a slight increase in milk production due to the dependence of implantation and the maintenance of gestation on prolactin in the rat and are not relevant to women. However, the finding is unlikely to be clinically relevant. In both studies, there was a slight increase in milk production due to the dependence of implantation and the maintenance of gestation on prolactin in the rat and are not relevant to women. However, the finding is unlikely to be clinically relevant.

When male rats given oral doses of 2, 10, or 50 mg/kg/day (up to 120 times the human 4.8 mg daily dose, based on mg/m²) for 12 weeks, there was a slight increase in milk production due to the dependence of implantation and the maintenance of gestation on prolactin in the rat and are not relevant to women. However, the finding is unlikely to be clinically relevant. In both studies, there was a slight increase in milk production due to the dependence of implantation and the maintenance of gestation on prolactin in the rat and are not relevant to women. However, the finding is unlikely to be clinically relevant.

When male rats given oral doses of 2, 10, or 50 mg/kg/day (up to 120 times the human 4.8 mg daily dose, based on mg/m²) for 12 weeks, there was a slight increase in milk production due to the dependence of implantation and the maintenance of gestation on prolactin in the rat and are not relevant to women. However, the finding is unlikely to be clinically relevant. In both studies, there was a slight increase in milk production due to the dependence of implantation and the maintenance of gestation on prolactin in the rat and are not relevant to women. However, the finding is unlikely to be clinically relevant.